Integral of Measurable Function1

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Integral of Measurable Function

One can prove the following propositions: (1) For all extended real numbers x, y holds |x− y| = |y − x|. (2) For all extended real numbers x, y holds y − x ≤ |x− y|. (3) Let x, y be extended real numbers and e be a real number. Suppose |x − y| < e and x 6= +∞ or y 6= +∞ but x 6= −∞ or y 6= −∞. Then x 6= +∞ and x 6= −∞ and y 6= +∞ and y 6= −∞. (4) For all extended real numbers x, y such that for...

متن کامل

Integral of Real-Valued Measurable Function

For simplicity, we follow the rules: X denotes a non empty set, Y denotes a set, S denotes a σ-field of subsets of X, F denotes a function from N into S, f , g denote partial functions from X to R, A, B denote elements of S, r, s denote real numbers, a denotes a real number, and n denotes a natural number. Let X be a non empty set, let f be a partial function from X to R, and let a be a real nu...

متن کامل

Integral of Complex-Valued Measurable Function

In this article, we formalized the notion of the integral of a complex-valued function considered as a sum of its real and imaginary parts. Then we defined the measurability and integrability in this context, and proved the linearity and several other basic properties of complex-valued measurable functions. The set of properties showed in this paper is based on [15], where the case of real-valu...

متن کامل

A Universal Integral Independent of Measurable Spaces and Function Spaces

For [0,∞]-valued (monotone) measures and functions, universal integrals are introduced and investigated. For a fixed pseudomultiplication ⊗ on [0,∞] the smallest and the greatest universal integrals are given. Finally, a third construction method for obtaining universal integrals is introduced.

متن کامل

Generalized Rings of Measurable and Continuous Functions

This paper is an attempt to generalize, simultaneously, the ring of real-valued continuous functions and the ring of real-valued measurable functions.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Formalized Mathematics

سال: 2006

ISSN: 1898-9934,1426-2630

DOI: 10.2478/v10037-006-0008-x